Application of Machine Learning Method of Data-Driven Deep Learning Model to Predict Well Production Rate in the Shale Gas Reservoirs

نویسندگان

چکیده

Reservoir modeling to predict shale reservoir productivity is considerably uncertain and time consuming. Since we need simulate the physical phenomenon of multi-stage hydraulic fracturing. To overcome these limitations, this paper presents an alternative proxy model based on data-driven deep learning model. Furthermore, study not only proposes development process a model, but also verifies using field data for 1239 horizontal wells from Montney formation in Alberta, Canada. A neural network (DNN) multi-layer perceptron was applied cumulative gas production as dependent variable. The independent variable largely divided into four types: well information, completion fracturing data. It found that prediction performance better when principal component with contribution 85% analysis extracts important information multivariate data, predicting DNN 6 variables calculated through importance analysis. Hence, develop reliable sensitivity hyperparameters performed determine one-hot encoding, dropout, activation function, rate, hidden layer number neuron number. As result, best mean absolute percentage error improved at least 0.2% up 9.1%. novel approach can be other formations. useful guide economic future plans nearby reservoirs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Machine Learning ARIMA to Predict the Price of Cryptocurrencies

The increasing volatility in pricing and growing potential for profit in digital currency have made predicting the price of cryptocurrency a very attractive research topic. Several studies have already been conducted using various machine-learning models to predict crypto currency prices. This study presented in this paper applied a classic Autoregressive Integrated Moving Average(ARIMA) model ...

متن کامل

on the relationship between self- regulated learning strategies use and willingness to communicate in the context of writing

این تحقیق به منظور بررسی رابطه بین میزان استراتژیهای خود-تنظیم شده یادگیری و تمایل به ایجاد ارتباط دانشجویان زبان انگلیسی انجام شده است.علاوه بر این،روابط و کنش های موجود بین ریزسنجه های استراتژیهای خود-تنظیم شده یادگُیری ، مهارت نگارش و تمایل به برقراری ارتباط و همچنین تاٍثیرجنسیت دانشجویان زبان انگلیسی در استراتژیهای خود-تنظیم شده یادگیری و تمایل به برقراری ارتباط آنها مورد بررسی قرار گرفته شد.

15 صفحه اول

the effects of integrating cooperative learning into vocabulary learning of elementary school students

the purpose of the research is to examine if integrating cooperative learning into vocabulary learning helps to increase word recognition of students in an elementary school in iran. it tries to investigate whether cooperative learning approach enables students to improve their language learning. this research used stad (students team achievement division) as a cooperative model in this study. ...

15 صفحه اول

the effect of learning strategies on the speaking ability of iranian students in the context of language institutes

the effect of learning strategies on the speaking ability of iranian students in the context of language institutes abstract language learning strategies are of the most important factors that help language learners to learn a foreign language and how they can deal with the four language skills specifically speaking skill effectively. acknowledging the great impact of learning strategies...

Integration of remote sensing and meteorological data to predict flooding time using deep learning algorithm

Accurate flood forecasting is a vital need to reduce its risks. Due to the complicated structure of flood and river flow, it is somehow difficult to solve this problem. Artificial neural networks, such as frequent neural networks, offer good performance in time series data. In recent years, the use of Long Short Term Memory networks hase attracted much attention due to the faults of frequent ne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Energies

سال: 2021

ISSN: ['1996-1073']

DOI: https://doi.org/10.3390/en14123629